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Abstract

In this paper we discuss a discrete time independent Schroedinger
equation defined on graphs. We show under appropriate hypotheses that
Dirichlet, Neumann and Robin problems all have solutions. We then
consider the inverse problem in recovering a potential function defined on
the vertices of the graph from the Dirichlet to Neumann map. We show
that we can always do this in critical circular planar graphs.

1 Preliminaries

A Schroedinger Network is the ordered 3-tuple Γ = (G,K, q) where G
is a graph partitioned into boundary and interior vertices, ∂G and intG
respectively, K is a Kirchoff matrix of conductivities as per usual, and q is
a vertex valued function, which we will call the Schroedinger Potential
Function. We will always assume that G is connected. Throughout the
paper we will only consider positive conductivities and nonnegative q,
though considering some of the recent work by Will Johnson, we could
probably get away with a significantly larger set of conductivities and
Schroedinger functions. Throughout the paper, we will consider q to be
both a |V | × |V | diagonal matrix with the same vertex ordering as K
and a function in RV . Similarly, we will not make the distinction between
vectors in R|V | and functions in RV , and hopefully the distinction presents
no confusion.

Given Γ and a function Φ ∈ RV we define the current at vertex v to
be

Iv(Φ) =
∑
u∼v

(Φ(v)− Φ(u))γuv + q(v)Φ(v)

where γuv is the conductivity along the edge between vertices u and v.
If IΦ ∈ RV is the function that maps v to Iv(Φ), we clearly have IΦ =
(K + q)Φ where the product is under normal matrix multiplication. We
call a function Φ to be γq-harmonic if it satisfies [(K + q)Φ]|intG = 0.

2 Forward Problems

Here we will discuss existence and uniqueness results for the the Dirichlet,
Neumann and Robin problems.
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2.1 Dirichlet Problem

Given a Schroediner Network Γ and a function φ ∈ R∂G, we wish to find
a function Φ ∈ RV such that

IΦ|intG = 0

Φ|∂G = φ.

We begin with a lemma on convex functions.

Lemma 2.1. Let f : R → R be a C1 convex function. The set of points
such that f ′ = 0 is convex and corresponds to the global minimum of f .
If f is strictly convex the set where f ′ = 0 consists of a single point.

Proof. This follows since the derivative of a weakly convex (resp. strongly
convex) function is weakly increasing (resp. strongly convex). The details
are left to the reader.

Lemma 2.2. If F : Rn → R is a C1 (nonstrictly) convex function, then
the set of points such that ∇F = 0 is convex and corresponds exactly to
the points that globally minimize F . If F is strictly convex then ∇F = 0
at at most one point.

Proof. The claim follows from the previous lemma by restricting F to
appropriate line segments. The details are left to the reader.

Theorem 2.3. If Γ is a Schroedinger network such that q ≥ 0 then the
Dirichlet problem has a unique solution.

Proof. If q = 0, then the problem is the ordinary electrical network case,
which we already know has a unique solution. So suppose q has at least
one component which is nonzero.

We will first show that (K + q) is positive definite. We recall from [3]
that

xTKx =
1

2

∑
u,v∈V

(x(u)− x(v))2γuv

and hence

xT (K + q)x =
1

2

∑
u,v∈V

(x(u)− x(v))2γuv +
∑
u∈V

x(u)2q(u) (1)

is always nonnegative, and the term corresponding to xTKx is positive
unless x is constant, in which case xT qx will be positive unless x = 0.
Hence (K + q) is positive definite.

By computation, we observe that the Hessian of xT (K + q)x is 2(K +
q), which is positive definite, and hence xT (K + q)x is a strictly convex
function on R|V |.

Now fix a φ ∈ R∂V and define the function P ∈ RintV as

P (y) =
(
φ y

)
(K + q)

(
φ
y

)
.
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Clearly P is a strictly convex function on RIntV . Since K+q is symmetric
and invertible, it permits an eigenvalue decomposition as

K + q = QLQt

where L is a diagonal matrix of eigenvalues and Q is an orthogonal matrix.
Hence

P (y) =
(
φ y

)
QLQt

(
φ
y

)
.

We claim that P (y) → ∞ as ‖y‖ → ∞. This is clear since all of the
entries in L are positive since K + q is positive definite (and hence has all
positive eigenvalues) and Q is orthonormal so

P (y) ≥ λmin‖(φ,y)‖2R|V | ≥ λmin‖y‖2R|intG| →∞.

Applying Theorem 2.83 of [1] shows that P attains an absolute minimum.
Since P is strictly convex, by Lemma 2, this implies that there is exactly
one point y0 such that ∇P (y0) = 0. In particular this implies that each
of ∂P/∂yi(y0) = 0 where yi corresponds to any of the components of y
on the interior of G. Differentiating the expression in equation (1), we see
this is equivalent to

I(φ,y0)|intG = 0.

Hence (φ,y0) is the solution to the Dirichlet Problem.

At this point we note that our above work has shown that there is
a well defined map Λq : R∂G → R∂G which maps function φ ∈ R∂G to
[(K+ q)Φ]|∂G where Φ is the unique extension of φ shown in the Dirichlet
problem. We leave it to the reader to verify that this map is linear. We
can compute Λ exactly as we did in electrical networks, namely by taking
the Schur complement. If we order vertices in G so that boundary vertices
come before interior vertices, we can put K into the block stricture

K =

(
A B
BT C

)
where A corresponds to boundary to boundary edges, B corresponds to
boundary to interior connections and C corresponds to interior to interior
connects. We order the entries of q in the same way, and say that qint

is the square submatrix of q corresponding to the interior vertices and q∂
is the square submatrix of q corresponding to the boundary nodes. By
exactly the same reasoning as in [3], we have that

Λq = (A+ q∂)−B(C + qint )−1BT .

We leave it to the reader to verify that since the Dirichlet problem has a
a unique solution that (C + qint ) must be invertible.

In the following section, we will show that Λ is invertible. We call Λ
the Dirchlet to Neumann map, and Λ−1 the Neumann to Dirichlet map.
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2.2 Neumann Problem

Theorem 2.4. Let Γ be a Schroedinger network such that q ≥ 0 and
q 6≡ 0. Let ψ ∈ R∂G. Then there exists a unique Φ ∈ RV such that
(K + q)Φ = ψ on ∂G.

Proof. The proof is immediate, since K+ q is positive definite, and hence
invertible. In particular, set

Φ = (K + q)−1

(
ψ
0

)
.

2.3 Robin Problem

Theorem 2.5. Let Γ be a Schroedinger network such that q ≥ 0. Let
φ ∈ R∂G and let a ∈ R∂G be such that a > 0 (pointwise). Then there
exists a unique Φ ∈ RV such that (K+q)Φ = 0 on intG and (K+a)Φ = φ
on ∂G (where in the latter equation we are treating the function a as a
diagonal matrix).

Proof. Since the above statement doesn’t depend on the values of q in ∂G
except that they are nonnegative, we will assume WLOG that q|∂G = 0.

If now q is uniformly 0, then the problem reduces to the Neumann
problem by replacing the boundary values of q with a. So from here on
suppose that q(v) > 0 for some v ∈ intG.

Let H be the vector space space of functions in RV such that [(K +
q)Φ]|intG = 0. By existence and uniqueness to the Dirichlet problem, we
know that dimH = |∂G|. Thus it is sufficient to show the linear map
MΦ = [(K + a)Φ]|∂G has trivial kernel on H. Suppose (K + a)Φ = 0 on
∂G and (K + q)Φ = 0 on intG. Recalling that (K + q) is positive definite
shows that if Φ 6= 0, then

0 < ΦT (K + q)Φ =
∑
v∈∂G

Φv[(K + q)Φ]v +
∑

v∈intG

Φv[(K + q)Φ]v.

Since (K + q)Φ = 0 on intG and q = 0 on ∂G and KΦ = −aΦ on ∂G, we
have

ΦT (K + q)Φ =
∑
v∈∂G

−avΦ2
v

and if each av > 0 then we must have
∑
v∈∂G−avΦ2

v ≤ 0, a contradiction.

Hence the map M is bijective from H to R∂G and the Robin problem has
a solution which is unique.

3 The Augmented Graph

The reader should observe that if v ∈ G, then we trivially have

Iv(Φ) =
∑
u∼v

(Φ(v)− Φ(u))γuv + q(v)Φ(v)

=
∑
u∼v

(Φ(v)− Φ(u))γuv + q(v)(Φ(v)− 0). (2)
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This trivial modification gives has a useful interpretation, namely that
by adding an additional boundary vertex to our original graph that has
constant voltage 0, we can transform our Schroedinger potential function
to edge conductivities. More precisely, given a Schroedinger network Γ, we
define the augmented graph G̃ to be the graph taken by adding a single
boundary vertex v0 which is connected to every other vertex with positive
q. To form the augmented electrical network Γ̃ we say γ̃uv = γuv if
uv ∈ G and γuv0 = qu if v0 is the new vertex. The diagram below should
make things clear.

Figure 1: The augmented graph.

Claim 3.1. A function Φ is γq−harmonic on Γ iff the function Φ̃ defined
by Φ̃|G = Φ and Φ̃(v0) = 0 (where v0 is the new vertex) is γ−harmonic

on Γ̃.

Proof. The proof follows trivially from (2).

Remark 3.2. The Maximum Principle for electrical networks holds on
the augmented graph.

We also observe another way to compute Λq. If we order the boundary
vertices so that the added vertex is the first vertex, then if Λ̃ is the response
matrix for Γ̃ then Λq is just obtained by removing the first row and column
from Λ̃. In particular, Λq is just a submatrix of the response matrix for
Γ̃. We can thus apply the determinant connection formula (see [3] since
we will not give a complete exposition). The following theorem will be
useful in recovery, but first we need some notation.

• C(vi, vj) is the set of paths between the two boundary nodes vi and
vj which don’t contain any boundary vertices other than vi or vj .

• Eα is the set of edges in a path α ∈ C(vi, vj).
• Jα is the set of interior nodes which are not the endpoints of any

edge in α.

• Dα = det K̃(Jα, Jα).

Theorem 3.3. Suppose v1, . . . , vn is the ordering of the boundary vertices
used to compute Λq and let vi, vj ∈ ∂G. There is a path in G from vi to
vj which does not contain any boundary vertices iff (Λq)ij < 0. If there is
no such path then (Λq)ij = 0.
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Proof. Let K̃ denote the response matrix for the augmented electrical
network. We will call the added vertex v0 (and assume 0-based indexing
on our augmented matrices, and 1-based on our regular matrices so as to
not disrupt out counting). By the determinant connection formula

(Λq)ij · det K̃(I, I) = (−1)1
∑

α∈C(vi,vj)

∏
e∈Eα

(γ(e) ·Dα).

We recall that all principle proper submatrices of a Kirchoff matrix
are positive definite (strictly), and hence det K̃(I, I) > 0 and Dα > 0 for

all α ∈ C(vi, vj). By assumption all of the conductivities in Γ̃ are positive.
Thus

∑
α∈C(vi,vj)

∏
e∈Eα(γ(e) · Dα) is positive iff C(vi, vj) is nonempty.

The statement follows immediately.

4 Dual Derivative and Residue Calculus

Given a circular planar graph G, we can define the dual and medial graphs
of G. We refer the reader to [3] for the appropriate definitions. We denote
the dual graph as G† and we call the original graph the “primal” graph.
We should note that when we say ‘G is circular planar’, we are referring
to a specific circular planar embedding, which will be fixed in all contexts.
Suppose we have a function Φ ∈ RV defined on G, then we define it’s dual
derivative to be Φ′, defined on directed edges in the dual graph. If v1

and v2 are adjacent in G, then if v†1, v
†
2 are the vertices in G† so that

−−→
v†1v
†
2

corresponds to the counterclockwise rotation of −−→v1v2 then we define Φ′ by

Φ′(
−−→
v†1v
†
2)

def
= γv1v2(Φ(v2)− Φ(v1)).

In standard electrical networks, if Φ is γ−harmonic we define a dual
function Φ† on the vertices of an electrical network to satisfy Φ†(v†2) −
Φ†(v†1) = γv1v2(Φ(v2)−Φ(v1)) for all v1 ∼ v2. However this only yields a
well defined function when the currents at each node sum to zero (which
corresponds to adding the desired differences in a loop in the dual graph
and getting zero). Since we no longer have this feature in γq−harmonic
functions, we can no longer define a function like this. The problem is
much the same as finding an antiderivative of a meromorphic function
around a pole with nonzero residue. We deepen the similarity to residues
in the following discussion.

Definition. Let P = −→e1
−→e2 . . .

−→en be a path of directed edges in the dual
graph (with a particular direction). Let G be a directed edge function on
the dual graph. Then we define∫

P

Gd`
def
=

n∑
i=1

G(−→ei ).

If Φ is γq-harmonic and v is a vertex in G, we define the Residue
at v, denoted by Res [Φ, v] to be Φ(v)q(v). If C = −−→v1v2

−−→v2v3 . . .
−−−−→vn−1vn

is a directed cycle in the dual graph, due to our embedding, C can be
thought of a curve in the plane. Thus we can also talk about clockwise
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and counterclockwise via the winding number. We say C is Jordan if C
is traversed counterclockwise, is closed, i.e. v1 = vn, and doesn’t intersect
itself, i.e., vi 6= vj for any 1 < i, j ≤ n. We note that if C is a Jordan
path, then by the Jordan Curve Theorem, C will divide the vertices of G
into two regions. We leave it to the reader to show that exactly one of
these regions will contain boundary vertices. We define the interior region
to be the one not containing any boundary vertices and we will denote
that region (as a collection of vertices) as intC.

Theorem 4.1 (Residue Theorem). Let Φ be qγ-harmonic and let C be a
Jordan path. Then ∫

C

Φ′ d` =
∑

v∈intC

Res [Φ, v].

Proof. We sketch the proof (and leave the details to the reader). We will
divide the intC into the cellular regions corresponding to each primal
vertex in intC. If Cv is the Jordan path containing exactly the vertex v,
we compute to verify that∫

Cv

Φ′ d` = Res [Φ, v] = Φ(v)q(v).

Furthermore, when we consider the sum∑
v∈intC

Res [Φ, v] =
∑

v∈intC

∫
Cv

Φ′ d`,

we observe that each edge in the dual graph in the interior region bounded
by C will appear in exactly two integrals, but with opposite orientations,
and hence will cancel. The only edges that won’t cancel will be the ones
occuring in only one of the Cv paths, which corresponds to being in the
path C. We note that the edges will appear with the appropriate orien-
tations, so our theorem statement is true.

5 Recovering q

The inverse problem for Schroedinger Networks is to see whether the the
map q 7→ Λq on a graph with fixed conductivities is globally injective.
From now on, we will only consider critical circular planar graphs (see
[3] for a description). We will spend the remaining section proving the
following theorem:

Theorem 5.1. If G is a critical circular planar graph, then the map
q 7→ Λq is globally injective, i.e. we can recover q from Λq.

Much of the following material on medial graphs and extensions come
from a paper by Will Johnson ([2]). In fact, Johnson’s argument for re-
covering conductivities in CCP graphs will be the basis for our argument.
We will assume that all graphs from here on out are critical circular planar
(see [3] for the definition).
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5.1 Rooted Sets and Extension Systems

The rest of this paper will deal with the harmonic extension of functions
defined on portions of the medial graph. We will notate the edges of
the dual graph by E† and the cells of the medial graph by M . We will
consider sets X ⊆ E† ∪M . We will always assume that if a set contains
an edge in the dual graph, then it contains the two cells in the medial
graph corresponding to the vertices of the edge.

Definition. Suppose X ⊆ E† ∪M . We construct the cellular adjacency
graph AX by setting creating a vertex corresponding to each cell in X,
and connecting two vertices in AX iff the cells they correspond to in X
share an geodesic edge. We say that X is cellularly connected if AX is
connected as a graph.

Definition. Suppose X ⊆ E† ∪M and D ⊆ X is a connected subset of
the boundary of the medial graph. We say that X is dually connected
through D (or just connected through D) if every cell in X corresponding
to a vertex in the dual graph can be connected to a boundary cell in D
through a path of edges and vertices in the dual graph which are contained
in X.

Definition. Suppose X ⊆ E† ∪M . We say X is rooted when all of the
following are true:

1. X is cellularly connected,

2. X is connected through a connected subset of the medial graph,

3. whenever X contains an edge in the dual graph, it contains at least
one of the two cells of the primal cells of the medial graph adjacent
to it.

To make the paper readable and not overly tedious, we will make a
great use of pictorial notation for conditions like the above one. We will
abandon the pictorial distinction between boundary vertices and interior
vertices, instead notating vertices from the primal graph by solid circles
(•) and vertices in the dual graph by empty circles (◦). We will shade
cells in the medial graph in our diagram to notate that they are in X.
We will draw a dashed line between vertices in the dual graph to notate
that the edge may or may not be in X, and we will draw a solid line to
indicate that the edge definitely is in X. We will use the following type
of diagram often, viewing each picture as a statement of inclusion holding
at every vertex in the medial graph:

Let P(Y ) denote the powerset of a set Y and let V (M) be the vertices
of the medial graph. We have the following definition:

Definition. We define an Extension System E to be a set of functions
defined on P(E† ∪M)× V (M) which map to P(E† ∪M) such that

1. e(∅, v) = ∅ for all e ∈ E, v ∈ V (M),

2. X ⊆ e(X, v) for all e ∈ E, v ∈ V (M),

3. e(X, v) ⊆ e(Y, v) for all e ∈ E, v ∈ V (M) whenever X ⊆ Y . (Mono-
tonicity)
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A final condition we could consider would be that if e ∈ E and
v ∈ V (M) then e(e(X, v), v) = e(X, v). All of the extension systems we
consider will satisfy this, but it might be useful for posterity to consider
useful extension systems which don’t satisfy this.

Definition. We say that a set X ⊆ E†∪M is closed in E if e(X, v) = X
for all e ∈ E and v ∈ V (M). By monotonicity, any intersection of closed
sets is closed, so we can talk about the smallest closed set containing X,
which we will denote as X or ClE(X) if the extension system being used
isn’t clear.

Definition. We call two extension systems, E and F , equivalent if
ClE(X) = ClF (X) for all X ∈ P(E† ∪M).

5.2 Electrical Extension System

We now present the extension system that was implicitly used by Will
Johnson in [2]. We could get by with fewer functions, but it will be useful
in the future to have them as we do. Basically if we have three cells in the
medial graph around a vertex, then we have functions to extend to the
fourth, and if we have two cells corresponding to adjacent vertices in the
dual graph, then we can extend to the edge connecting them. We present
them pictorially, with the assumption that any of the functions applied
to a vertex not of the form shown will be the identity map.

Figure 2: A pictorial representation for e1.

Figure 3: A pictorial representation for e2.
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Figure 4: A pictorial representation for e3.

We remark these functions clearly satisfy the requirements of an ex-
tension system.

5.3 Schrödinger Extension System

We now define another extension system, consisting of four functions
s1, s2, s3, and s4. We will take the first two functions from the electri-
cal networks. So let s1 = e1 and s2 = e2. Unfortunately, the third
extension function for electrical networks turns out not to be what we
want for Schroedinger networks (as we will later see), and hence we have
to define two more functions to get around this.

We will define s3 as follows (for the lazy readers, skip ahead to the
pictures). Let X ⊆ P(E† ∪M) and v is a vertex in the medial graph.
Suppose both of the dual graph cells d1 and d2 that are adjacent to v are in
X (though the edge between them potentially isn’t). Now suppose there
is a path of dual graph edges in X which connects d1 and d2 such that for
each edge in the cycle, the outer cell from primal graph which is adjacent
to this edge is also in X (we define outer to mean in the region containing
boundary vertices). We also allow the case that the path from d1 to d2 is
travels through a connected component of boundary cells (which all must
be contained in X). In this case we define “outside” to mean the region
not containing the boundary cells in the path. If the above conditions
are satisfied, then e3 gives adds everything inside of the cycle (though e3

does not add the d1d2 edge). We illustrate s3 with a bunch of awesome
pictures.

We now define s4. Let d1, d2 ∈ X be vertices adjacent to the vertex
v ∈ V (M) in the dual graph with an edge between them (which is not
necessarily in X) and d1 and d2 are connected by a path of edges in the
dual graph which are in X. If all of the cells in the primal graph cells
in one of the regions bounded by the path connecting d1 and d2 then
e(X, v) = X ∪ {d1d2}. As with s3, we also include the possibility that the
path between d1 and d2 consists partially (or entirely) of a connected path
in the boundary of the medial graph which is contained in X. Again, we
have pictures below.

We note that s1, s2, s3 and s4 preserve the rootedness of a graph.
Before we continue, we need some definitions
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Figure 5: An example of s3 where a loop does not contain a portion of the
boundary.

Figure 6: An example of s3 where a loop does contain a portion of the boundary.

Figure 7: An example of s4 where a loop does not contain a portion of the
boundary.

5.4 Extensions of Rooted Sets

We wish to show that the electrical extension system, E and the Schroedinger
extensions system, S, are equivalent for rooted graph.

Lemma 5.2. If X consists of all of the boundary of the medial graph
except possibly a single primal vertex, then ClE(X) = E† ∪M .

This is very straightforward and the proof is left to the reader (see
[2]).

Corollary 5.3. s3(X, v) ⊆ ClE(X) for all v and X.
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Figure 8: An example of s4 where a loop does contain a portion of the boundary.

Proof. Apply the previous lemma to the subgraph contained in the loop.

Theorem 5.4. The Schroedinger and Electrical extension systems are
equivalent for rooted graphs, i.e. if X is rooted, then ClE(X) = ClS(X).

Proof. We first observe that if s1(X, v) = e1(X, v) ⊆ ClE(X) and similarly
s2(X, v) = e2(X, v) ⊆ ClE(X). Furthermore, by the previous corollary, we
have s3(X, v) ⊆ ClE(X). Finally, we have s4(X, v) ⊆ e3(X, v) ⊆ ClE(X).
Hence ClS(X) ⊆ ClE(X) for any X.

Now suppose X is rooted. We write ClE(X) as the last element in
a finite sequence of sets Xj such that X1 = X and Xj+1 = eij (Xj , vj).
We will create a finite sequence {Yj} so that Xj ⊆ Yj for all Yj and Yj
is rooted and Yj ⊆ ClS(X). We define Yj recursively. Set Y1 = X1 = X.
Suppose Yj has been defined as above for all j ≤ k. If ik = 1, 2 then we
just set Yk+1 = eik (Yj , vj) which clearly satisfies our requirements since
e1(Yk, vk) ⊆ ClS(X) and e2(Yk, vk) ⊆ ClS(X) and e1(Yj , v) and e2(Yj , v)
are both also rooted. Now suppose ik = 3. We want to show that there
is a Yk+1 ⊆ ClS(X) such that e3(Yk, v) ⊆ Yk+1 and Yk+1 is rooted. This
is actually not hard. The rootedness of Yk implies that if d1, d2 are dual
vertices adjacent to v which are both contained in Yk, then each has a
path to the boundary which is contained in Yk. If these paths intersect
at a dual cell d0, we concatenate the path from d1 to d0 with the path
from d0 to d2. Otherwise we have a path from d1 to d2 which intersects
a connected component of the boundary which is contained in Yk. Since
Yk is rooted, at each edge along our path from d1 to d2, at least one of
the adjacent primal cells will be contained in Yk. We define Y ′ as s2

sequentially applied to each of the vertices along the dual edges on the
path from d1 to d2. We then set Yk+1 = e4(e3(Y ′, v), v) and observe that
{d1d2} ∈ Yk+1 and Yk+1 is rooted. Furthermore, Yk+1 is clearly a subset
of ClS(X) since we just applied a bunch of extension functions in S to
Yk, which was a subset of ClS(X). If Xn = ClE(X), then we have thus
shown that Xn = ClE(X) ⊆ Yn ⊆ ClS(X), so ClE(X) ⊆ ClS(X).

We note this implies that the E closure of a rooted graph is rooted.
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5.5 Consistent Extensions

In extending functions defined on a primal graph and the edges of the dual
network, we will need an additional notion of extension which is slightly
stronger than the above definition. Everything to follow relies heavily on
work done in [2].

Definition. Let E be an extension system. Set E0 ⊆ E, which we will call
the simple extension functions of E (at this point E0 can be any fixed
subset of E). Suppose X ⊆ E†∪M . We say X ′ is a simple extension if
X ′ = e(X, v) for some e ∈ E0 and v ∈ V (M). We say X ′ is consistent
if

1. X ′ \X has at most one edge in E† and at most one cell in M .

2. If x ∈ X ′ \X, then x 6∈ e(X, v) for any e ∈ E0 and v ∈ V (M).

In general, if X ⊆ X ′ ⊆ ClE(X), and X ′ can be written as a sequence
of applications of functions in E to X, we will say that X ′ is an E-
extension of X, but if X ′ can be written as a sequence of simple consistent
extensions, then we say X ′ is a consistent extension of X.

The motivation for the previous definition is that if we know the values
of a function on X which satisfies rules corresponding in some way to an
extension system (for instance being γq-harmonic), then the values of an
extension of our function on a consistent extension of X will be uniquely
determined and not contradictory, i.e., will still be γq-harmonic.

We will now fix the simple extension functions with respect to the
Schroedinger Extension system to be E0 = {e1, e2, e4}.
Definition. If X ⊆ M ∪ E†, we define the number rank (X) to be the
number cells of in X minus the number of interior vertices in X (an
interior vertex is one where the four neighbouring cells in M are in X).

Lemma 5.5. If X ′ is an electrical extension of X, then rank (X ′) ≤
rank (X).

Proof. This is follows immediately since e1 and e2 add a single cell and
add at least one interior vertex. Furthermore, e3 doesn’t change rank at
all.

Corollary 5.6. If X ′ is a Schroedinger extension of X, then rank (X ′) ≤
rank (X).

Proof. By the proof of Theorem 5.4, every Schroedginer extension is also
an electrical extension.

Theorem 5.7 ([2]). Let X ⊆ M ∪ E† be a connected set of cells. Then
rank (X) is one more than the number of geodesics which pass through the
interior of X, where we count a geodesic multiply if it exits and reenters
X. In particular, if X is convex, then rank (X) exactly equals the number
of geodesics which pass through the interior of X plus one.

The proof can be found in [2].
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Lemma 5.8. If s3(X, v) \ X contains a cell in the medial graph which
is not adjacent to v, then rank (s3(X, v)) < rank (X). If s3(X, v) \ X
contains no cells which are not adjacent to v, then s3(X, v) = s2(X, v′)
for some v′ ∈ V (M).

Proof. Since the medial graph behaves well with boundary to boundary
and boundary to interior contractions, it suffices to assume that X con-
tains all of the boundary cells of the medial except possibly for one primal
cell, which we denote p, which is adjacent to v. Clearly every geodesic in
the medial graph must pass through the interior of X, so rank (X) ≥ G+1
where G is the total number of geodesics. Denote the two geodesics which
reach the boundary while adjacent to p by g1 and g2. Suppose there is a
cell in interior of the medial graph which is not in X. Denote it by c.

Figure 9:

Since G is critical, c must have be bounded by at least 3 geodesics
(since otherwise we’d have a lens). At most two of these geodesics can be
g1 or g2. In particular, the one that is neither g1 nor g2, must both leave
and reenter the interior of X (since all boundary cells other than p are in
X). Hence rank (X) ≥ G+2. Clearly s3(X, v) = ClE(X) = M∪E†. Since
rank (M ∪E†) = G+ 1, we have rank (s3(X, v)) = G+ 1 < rank (X).

Corollary 5.9. Suppose X is rooted. If rank (X) = rank (ClE(X)), then
ClE(X) = ClE0(X)

Proof. It is sufficient to show that ifX is rooted and rank (X) = rank (ClE(X)),
then we can write s3(X, v) as a repeated composition of X by s1, s2 and
s4. Suppose we have a path of dual edges which are contained in X, which
would form a cycle if we added the edge d1d2, where d1 and d2 are dual
cells in X which are adjacent to v. Suppose further that X also contains
all of the primal cells adjacent to edges in P on the exterior of a region
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R determined by the cycle formed by P and d1d2 (so that s3 will add
something to X). By the previous Lemma, we know that X must contain
all of the cells in R except possibly the cell adjacent to v. Let b denote the
cell in the primal graph in the bounded region which is possibly not in X,
and let b′ denote the primal cell which is connected to b which is across
the edge d1d2. If b is a boundary cell, then b ∈ X since X is rooted. If
b is not a boundary cell, then b must be connected to primal cell b′′ 6= b′

since G is critical. By the previous Lemma, the two dual cells d′1 and
d′2 adjacent to the medial vertex between b and b′′ must be contained in
X since they are either in R or on the path P . Since X is rooted, we
know that the subset of the dual graph which is in X is connected to the
boundary, and hence there are paths from d′1 to P and from d′2 to P . Since
no dual cells inside R \ P are connected by an edge to any dual cell in
((M ∪E†) \R) \ P , we can assume these paths are completely contained
in R. If these paths intersect in R \ P , then by combining these paths,
we have a path P ′ from d′1 to d′2 which doesn’t contain any edges from
P , and hence it will bound a subregion R0 ⊆ R which cannot contain
b since no edge in P is contained in the path from d′1 to d′2 (and hence
d1d2 cannot be in P ′, and no subregion of R can contain d1d2 but not b).
Similarly, if the paths from d′1 to P and d′2 to P don’t intersect, then we
form a path from d′1 to d′2 by concatenating the path from d′1 to P with
an appropriate segment along P and then concatenating again with the
path from P to d′2 (see picture below).

Figure 10:

This path, with the addition of d′1d
′
2 bounds a subregion R2 ⊆ R, which

cannot contain b since d1d2 is not in the path we chose (the reader can
fill in this implication), and hence by applying s4, we see that a simple
extension of X contains the edge d′1d

′
2. By an appropriate application
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of s2, we see that b is in a simple extension of X. Clearly we can get
the remaining dual edges in R by applying s1 appropriately within the
region.

Theorem 5.10. Let X be a E closed, rooted set. Let a be a boundary
cell in the medial graph which is adjacent to a cell in X. If Y is a simple
extension of X ∪ {a} then Y is a consistent extension. In particular,
ClE(X ∪ {a}) is a simple consistent extension of X ∪ {a}.

Proof. We ovserve that rank (X∪{a}) = rank (X)+1 because X is closed.
Furthermore, since the geodesic that separates X and a cannot be pass
through the interior of X (since it must correspond to one of the half
planes defining X), and it does pass through the interior of X ∪ {a},
we know that rank (X ∪ {a}) > rank (X). By Corollary 5.6 we know
that rank (ClE(X ∪ {a}) ≤ rank (X ∪ {a}). Hence rank (X ∪ {a}) =
rank (ClE(X∪{a}). By Lemma 5.6, we thus know that if Y is an extension
of X∪{a} then rank (X∪{a}) ≥ rank (Y ) ≥ rank (ClE(X∪{a}) and hence
we have equality throughout.

We now will write an increasing sequence of sets corresponding to
applying various functions in E0. Set X0 = X ∪ {a} and Xn = Y such
that Xi+1 = eij (Xi, vi), and suppose WLOG that Xi−1 ( Xi for all
1 ≤ i ≤ n. Since the rank doesn’t decrease, we cannot have at any stage
of our process a cell in the medial graph which would be added by two
separate extension functions (or the same one applied at two different
vertices) since then we would be adding exactly one cell and increasing
the number of interior vertices by at least two (one for each way we could
add the cell) and hence the rank would drop, which is a contradiction.

We now need only verify that no edge in the dual graph could be added
in two different ways. A quick examination of our extension functions
shows that the only way that we could have two different ways of adding
a dual edge would be to have a vertex v in the medial graph where all
four adjacent cells were in Xi but the dual edge was not, in which case
either applying s1 or s4 to the vertex would add the dual edge. Let i be
the smallest i such that Xi contains at most three of the cells around v.
We observe that such an i exists since X is closed so all vertices in the
medial graph have exactly 0, 2, or 4 cells adjacent to them which are in
X. Hence if a vertex is adjacent to four cells in X ∪ {a}, they must have
already been in X, and hence the dual edge would have also already been
in X since X is closed. Since at each stage, we can add at most 1 cell in
the dual graph, we know that there are exactly 3 cells around v in Xi. We
let b be the cell which is in Xi+1 \Xi. The cell b cannot be added by any
function applied to the vertex v, since if so, we would be adding the dual
edge. Thus we must be adding b by applying either s1 or s2 to another
vertex. In either case, b must be adjacent to two anticorners (one at v
and one at the other vertex) and hence adding b adds a single cell and two
interior vertices, which would lower the rank, which is a contradiction.

The last claim follows since Corollary 5.9 shows that ClE(X ∪ {a}) is
a simple extension of X ∪ {a} (and hence by what we have just proven,
ClE(X ∪ {a}) is a simple consistent extension.
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Theorem 5.11. Let X be rooted and closed in E and let a ∈ M \ X be
a boundary cell which is adjacent to X. If Y is a simple extension of
X ∪ {a}, then s3(Y, v) \ Y consists of at most one element, which is a
primal cell.

Proof. By the previous theorem Y is a simple consistent extension. The
addition of any cell other than the primal cell adjacent to v is impossible
by Lemma 5.8. The addition of any dual edges is impossible by exactly
the same argument as in the previous theorem (since X is closed, we can
show exactly as above that we would drop in rank somewhere in extending
to Y ).

5.6 Extending Functions and Finding q

We now present a way of finding q from Λq. Our general strategy will be
to eliminate first delete all boundary to boundary edges, since they turn
out to be insignificant. Next we’ll contract boundary spikes by finding
an appropriate functions on the medial graph which have value 1 on the
boundary portion of a boundary spike, and 0 on the interior portion. We’ll
repeat this process until we exhaust our graph.

We recall two lemmas from [3]:

Lemma 5.12. Every CCP graph has at least 3 boundary spikes or bound-
ary to boundary edges.

Lemma 5.13. Contracting a boundary to boundary edge or boundary
spike on a CCP graph yields a CCP graph (or possibly a disconnected
graph with only CCP connected components).

Step 1. We first observe that since the Schur Complement is linear
in boundary to boundary connections, we can just subtract the already
known conductivities from the appropriate components of the original re-
sponse matrix to get the response matrix of the network with the boundary
to boundary edge deleted.

Step 2. By Lemma 5.12, we know that after deleting all boundary to
boundary edges, we are left with at least one boundary spike. We wish
to find some sort of mixed boundary conditions that will always have a
solution and will guarantee that the function on the interior will have
value 0 at the interior node of the boundary spike, and value 1 on the
boundary component. We observe that there is a geodesic g which passes
through the boundary spike. Pick all of the the boundary cells in the
medial graph on the side of g which doesn’t contain the boundary vertex
on the stated boundary spike. We construct a function (which will turn
out to be γq-harmonic), as follows. Define the set X ⊆ M ∪ E† to be
all of the boundary medial cells on the side of g which does not contain
the chosen boundary vertex on the boundary spike. We remark that X
is rooted. Define the triple F = (f, φ, e) where f is some function on
primal vertices (a voltage function), φ is a function on boundary vertices
(a boundary current function) and e is a directed edge function on the dual
graph (an interior current function). We proceed with several lemmas.

Lemma 5.14. Let Γ be a Schroedginer network (recall we assume that
G is connected) and suppose v ∈ ∂G be a boundary vertex. Suppose

17



that Φ1 and Φ2 are γq-harmonic on Γ and Φ1|∂G\{v} = Φ2|∂G\{v} and
Λq(Φ1)|∂G\{v} = Λq(Φ2)|∂G\{v}. Then Φ1 = Φ2.

Proof. By linearity it’s sufficient to show that if Φ is γq-harmonic, Φ|∂G\{v} =
0 and Φ|∂G\{v} = 0 then Φ = 0 on G. If Φ(v) = 0, we are done, so assume
otherwise. Without loss of generality, assume that Φ(v) = 1. Order the
boundary vertices so that v is the first one (and say v = v1). Since G is
connected, v must be connected through the interior to at least one other
boundary vertex vj . By Lemma 3.3, we know that (Λq)1j < 0. Since
(ΛqΦ)j = (Λq)1j < 0, we have a contradiction, since we assumed that
ΛqΦ(vj) = (ΛqΦ)j = 0.

Lemma 5.15. Suppose F = (f, φ, e) is defined on M ∪ E† and f is γq-
harmonic, φ = Λq(f) and e is the dual derivative of f . If f = 0 on all
primal cells of X (where X is defined as above) and φ = 0 on all primal
cells v in X whenever the two dual boundary cells adjacent to v are also
in X, then f and e are all 0 on ClE(X).

Proof. Observe that X is rooted. We observe that the values of f and e
will always be uniquely determined on the cells and dual edges that are
added by s1 and s2. Since no application of an extension function will
add a boundary cell, and φ is specified on all of the primal dual cells in
ClE(X), by the previous lemma f and e will be uniquely determined on
any cells or dual edges added by s3. Similarly, by the Residue Theorem,
f and e will be uniquely determined on any cell or dual edge added by s4.
In particular, f and φ are uniquely determined on all of ClE(X), which is
just the entire region on the appropriate side of g.

Theorem 5.16. Let X be rooted and closed in E, and suppose X contains
at least two adjacent boundary cells of the medial graph. Suppose F =
(f, φ, e) is a function on a subset of X such that

1. f is defined on all primal cells in X,

2. e is defined on all dual edges in X,

3. φ is defined on a primal boundary cell v iff the adjacent two boundary
dual cells are also in X, and φ is the sum of the currents coming
into v, all of which are defined,

4. e satisfies the dual derivative condition at any vertex in the medial
graph when all four adjacent cells are in X,

5. if v ∈ intG∩X, and all adjacent vertices of v are also in X, then f
is γq-harmonic at v.

If a ∈ M \ X is a boundary cell in the medial graph adjacent to X,
then there is a unique extension of F to ClE(X ∪ {a}) which satisfies the
above properties on ClE(X ∪ {a}).

Proof. We observe that a can be adjacent to at most one boundary cell
in X, since otherwise due to the circular ordering of boundary cells in
the medial graph, we would need the left and right neighbors of a to be
contained in X, but since X is closed, a would have to be separated by
a geodesic. But no geodesic bounds a region with exactly one boundary
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cell since the graph is connected (so no such region with exactly one cell
could exist) and critical (so we can’t have a region bounded by a geodesic
with interior cells and exactly one boundary cell, since then we’d have a
lens). If a is a primal cell, we specify the value of f arbitrarily on a. If a
is a dual cell, we specify the value of φ arbitrarily on the boundary primal
cell in X which is adjacent to a (by what we have said there is exactly
one such cell in X. We note that by assumption (3), φ cannot already be
defined on a. We also note that the assumption that X has at least two
boundary cells, defining φ on the cell adjacent to a would not contradict
(3).

We now will extend F using our extension functions. By Theorem
5.10 there is a consistent extension (of cells and edges) from X ∪ {a} to
ClE(X ∪ {a}). We will extend F in the same order as we extend X ∪ {a}
to ClE(X ∪ {a}). Let Y be any simple consistent extension of X ∪ {a}
such that F has been extended onto Y in such a manner that satisfies all
of the above conditions.

Let s1(Y, v) be an extension of Y . By Theorem 5.10, we know that
s1(Y, v) is a consistent extension of Y . We define e on the dual edge
which is added to satisfy the dual derivative condition, so (2) and (4) are
satisfied. We add no primal cells so (1) is satisfied. We note that we can
never complete a any simple cycle in X (a cycle which contains a single
face in the dual graph), since then we could instead apply s4, contradicting
the fact that our extension (of cells and edges) is consistent. Hence in our
application of s1, we are always satisfying 5. We now consider condition
3. Let d denote the dual cell we add. If d is adjacent to a primal boundary
cell p which was already adjacent to another dual boundary cell, say d′,
then we will need to define φ on p. Let d0 be the dual cell that is also
adjacent to v and which has a dual edge connected to d. Since the edge
d0d is not in Y , but Y is connected, we know that d0 is dually connected to
d′ (possibly through connected components of the boundary of the medial
graph which are also in Y ). In particular, there is a path from d0 to d′,
and when we add the edge dd0 and the cells d, p and d′, we get a closed
loop (in the sense of s3) which is in s1(Y, v), and which bounds a region
R ⊆M ∪E† (by the Jordan Curve Theorem there will be two regions;pick
R to be the region containing the boundary cells d, p and d′). We create
the simple extension Y ′ of Y by applying s2 at every medial vertex on
a dual edge in P . By Theorem 5.10, we know that Y ′ is a consistent
simple extension of X ∪ {a}, and hence by Theorem 5.11, we know that
s3(Y ′, v) \ Y ′ cannot contain any dual edges. But s3(Y ′, v) must contain
all of the dual edges corresponding to primal edges connected to p. Since
Y ′ \ s1(Y, v) contains no dual edges, all of the dual edges crossing primal
edges connected to p must be in s1(Y, v) already, and hence e must be
defined on them. We thus define φ on p as the appropriate sum of currents
entering v.

We now consider applying s2 to Y . We define f on s2(Y, v) so that
the dual derivative condition is satisfied (and since s2(Y, v) is a simple
consistent extension of Y , the value of f will be uniquely determined in
this manner). Thus conditions (1), (2), (4), and (5) will be satisfied. As
before, condition (4) requires some care. Call the primal cell that we add
p. If adding p is adjacent to two dual boundary cells in Y , we will need
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to specify φ at p. Let d1 and d2 be the adjacent boundary cells. Since
our graph is dually connected (possibly through a connected component
of the boundary), there is a path P in Y from d1 to d2. Adding p would
make this a loop. If P ∪ {p} contains the entire boundary, then by the
uniqueness of the Dirichlet problem, the current at p would be determined.
If P does not contain the entire boundary, it must contain some dual edge
`, which contains some medial vertex, v0. If we form the simple consistent
extension Y ′′ of s2(Y, v) by applying s2 along every dual edge in P , then
s3(Y ′′, v0) contains all of the dual edges in R, and in particular all of the
dual edges crossing primal edges that have p as an endpoint. By Theorem
5.11, s3(Y ′′, v0) \ Y ′′ contains no dual edges. Clearly Y ′′ \ Y contains
no dual edges. Hence s3(Y ′′, v0) \ Y contains no dual edges, and hence Y
already contains all of the dual edges which cross primal edges that have p
as an endpoint. Hence e is already defined on them, and we can uniquely
define φ on p as the sum of the entering currents.

We lastly need to consider the extension s4(Y, v). The function s4 adds
no cells so (1) and (3) are automatically satisfied on s4(Y, v). If s4(Y, v)\Y
contains a dual edge, then v can have at most three neighboring cells in Y ,
since otherwise s4(Y, v) wouldn’t be a consistent extension and we would
be violating Theorem 5.10. Thus (4) will be satisfied by however we define
e on this edge. However we define e will satisfy (2), so we need only worry
about (5) and uniqueness. Suppose d1 and d2 are dual cells in Y which
are adjacent to v. Since Y is dually connected to some connected portion
of the boundary in Y , we know that there Y contains a path P from d1 to
d2, possibly going through portions of the boundary. Let p be the single
primal vertex in Y which is adjacent to v. We can form the consistent
simple extension Y ′′′ of Y by applying s2 at every dual edge in P . Then
s3(Y, v) would contain all of the dual edges except for one around the
face of the dual graph which contains v The dual edge that it would not
contain would be the single dual edge in s3(Y, v). As before, Theorem 5.11
shows that Y must already contain these dual edges. Because of condition
(3), p must be an interior cell, then, as we have shown, Y contains all of
the dual edges except for one in the dual face containing v. We define e
on the single edge in s4(Y, v) \ Y so that the line integral of e around the
face containing v evaluates to q(p)f(p), and hence f will satisfy 5.

We simply repeat the above processes until we reach ClE(X ∪ {a}).

Combining Lemma 5.15 and Theorem 5.10, we see there is a mixed
problem on the boundary all of whose solutions are zero on one side of
a geodesic passing through a boundary spike, and have value 1 on the
boundary spike, and that furthermore, this mixed problem always has a
solution.

If we have such a situation, then we can solve for q at the boundary
vertex v of a boundary spike, since if ψ is the current leaving the boundary
spike, and is the voltage at the boundary vertex of the boundary spike,
then

(1− 0)q(v) = ψ.

We now need to show that if we know q(v) on a boundary spike, then
we can find the response matrix for the network with the boundary spike
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contracted. To do this, fix a boundary potential function Φ at all of the
boundary nodes except v (our boundary spike). Let u1 be the voltage at
the interior node of the interior vertex of the boundary spike and let u2

be the voltage at the boundary vertex. Let γ be the conductivity along
the boundary spike. Then we have

(u2 − u1)γ + u2qv = eTv Λq(Φ),

and hence
u2(γ + qv − (Λq)vv) = u1γ +K,

where K is independent of u2 and ev is the unit vector with entry 1 in the
v component. Thus we can pick u1 (the interior potential) arbitrarily iff
(γ+qv−(Λq)vv) 6= 0. This is easy to show though, since γ+qv−(Λq)vv = 0
iff the current coming out of node v is γ + qv when we apply the voltage
function ev. This would make u2 = 0, but this can’t happen, since by
the maximum principle, this would imply that the voltage over the entire
network was zero except at v, but since u1 = 0, and there is current
entering that node, there would have to be some other vertex in the graph
other than v with nonzero voltage, which is a contradiction. Hence we
can pick u2 to force any value of u1, and thus read off the response matrix
appropriately.

The above computation shows that we can contract boundary spikes.
Since it is trivial to recover q if G consists of only a single boundary vertex,
and by the Lemmas at the beginning of the section about contracting and
deleting edges of CCP graphs, we know that we can always recover q.
QED
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